一維的高斯分佈(或常態分佈) $X \sim N(\mu,\sigma^2 )$
PDF: p(x)

二維的高斯分佈 $ N\sim(\mu,\sum ) $
PDF: p(x,y)



Many sample points from a multivariate normal distribution with and , shown along with the 3-sigma ellipse, the two marginal distributions, and the two 1-d histograms.
μ ∈ Rk — location
Σ ∈ Rk × k — covariance

References:
- WiKi-Multivariate normal distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution - 吳恩達-機器學習(9)-異常檢測、協同過濾https://www.itread01.com/content/1545204306.html
- Andrew Ng
https://www.coursera.org/learn/machine-learning?action=enroll#syllabus - Python for Covvriance
https://hadrienj.github.io/posts/Preprocessing-for-deep-learning/
沒有留言 :
張貼留言