2021年2月28日 星期日

物件偵測 (#1/5): MS COCO的資料集格式




在進行AI圖像上, 常會看到MS COCO的資料集,

COCO 的圖片資料集,提供3種標注檔:object instances(用於物件偵測), person keypoints(人的關鍵點,用於姿態識別)以及 image captions(圖像標題) , 每種標注類型都有相應的json 檔。標注檔也分好了訓練集、驗證集。


with open(annotation_file, "r") as f:
    data = json.load(f)
    annotations=data["annotations"]
    images=data["images"]
    categories=data["categories"]
    
    
    
print(f"Number of images: {len(annotations)}")
print(f"Number of images: {len(images)}")
print(f"Number of images: {len(categories)}")

The COCO dataset has been downloaded and extracted successfully.
Number of images: 36781
Number of images: 5000
Number of images: 80

images[60] => 取出index 60 這張圖的資訊

{'license': 1,
 'file_name': '000000360661.jpg',
 'coco_url': 'http://images.cocodataset.org/val2017/000000360661.jpg',
 'height': 480,
 'width': 640,
 'date_captured': '2013-11-18 21:33:43',
 'flickr_url': 'http://farm4.staticflickr.com/3670/9709793032_f9ee4f0aa2_z.jpg',
 'id': 360661}

annotations[60] => 取出index 60 annotations資訊

{'segmentation': [[267.51,
   222.31,
   292.15,
   222.31,
   291.05,
   237.02,
   265.67,
   237.02]],
 'area': 367.89710000000014,
 'iscrowd': 0,
 'image_id': 525083,
 'bbox': [265.67, 222.31, 26.48, 14.71],
 'category_id': 72,
 'id': 34096}


annotation{
    "id": int,    
    "image_id": int,
    "category_id": int,
    "segmentation": RLE or [polygon],
    "area": float,
    "bbox": [x,y,width,height],
    "iscrowd": 0 or 1,
}


每一張圖片會有一個image_id, 而一張圖可能包含一個以上的單一物件或群物件. 針對每一個物件,
不論是單一物件或群物件, 都會用一個annotation來表現物件內容.. 一張圖會有多個annotation, 即多個物件







annotation{
 "id": int, ==> 物件id
 "image_id": int, ==> 所屬的圖片
 "category_id": int, ==>此物件的類別id
 "segmentation": RLE or [polygon], ==> 單一物件或一群物件的區域描述
 "area": float, ==> 物件區域的Pixel總數
 "bbox": [x,y,width,height], ==> bounding box的座標
 "iscrowd": 0 or 1, ==> 0: 單一物件, 1: 一群物件 (如:一群觀眾) 
}


其中"segmentation": 若為單一物件, 則是以一個多邊形的座標點 [X1,Y1,X2,Y2, ....] 來描述此物件的區塊位置.
若是一群物件的區域描述, 如要描述一群蘋果,則會用Mask的方式來描述,如下圖所示。






一群物件的區域描述, 即iscrowd=1, 則segmentation的內容為

{'counts': [671, 10, 2, 2, 4, 22, 6, 31, 1, 11, 1, 10, 379, 16, 1, 25, 5, 55, 378, 43, 4, 55, 378, 44, 3, 55, 378, 44, 3, 55, 378, 44, 3, 55, 378, 44, 3, 55, 378, 44, 4, 54, 379, 29, 1, 16, 1, 54, 380, 28, 2, 15, 2, 53, 382, 23, 6, 15, 1, 8, 21, 1, 3, 3, 5, 12, 384, 20, 8, 16, 40, 12, 384, 16, 14, 15, 40, 10, 386, 10, 21, 14, 40, 8, 388, 8, 22, 15, 41, 3, 393, 3, 25, 15, 465, 15, 465, 15, 466, 14, 467, 13, 468, 12, 469, 10, 471, 8, 474, 3, 983, 7, 472, 9, 470, 11, 454, 6, 1, 20, 452, 28, 451, 30, 449, 31, 448, 33, 447, 34, 446, 35, 445, 35, 445, 35, 445, 35, 445, 36, 445, 36, 445, 35, 447, 33, 450, 30, 450, 30, 450, 12, 1, 17, 451, 10, 3, 16, 452, 8, 6, 13, 455, 4, 12, 8, 474, 3, 50865, 6, 459, 6, 8, 11, 454, 27, 452, 29, 450, 31, 448, 32, 448, 32, 448, 32, 448, 32, 448, 32, 448, 32, 448, 31, 450, 29, 452, 20, 2, 4, 456, 7, 1, 3, 1, 4, 7174, 6, 2, 6, 4, 14, 447, 34, 445, 36, 443, 38, 442, 38, 442, 38, 442, 38, 442, 38, 442, 38, 442, 38, 443, 36, 445, 34, 446, 6, 19, 6, 450, 3, 478, 1, 42714, 6, 473, 8, 471, 10, 469, 15, 465, 18, 462, 19, 461, 21, 459, 22, 458, 24, 456, 26, 455, 25, 456, 24, 458, 22, 461, 18, 463, 16, 466, 3, 5, 3, 3840, 7, 463, 20, 459, 22, 457, 27, 448, 33, 446, 35, 437, 44, 435, 46, 433, 47, 432, 48, 432, 48, 432, 48, 432, 48, 432, 30, 4, 14, 432, 29, 7, 12, 432, 29, 8, 10, 433, 29, 9, 8, 435, 13, 1, 1, 2, 10, 12, 3, 439, 12, 6, 7, 456, 10, 471, 3, 3, 2, 474, 1, 478, 2, 477, 3, 476, 4, 476, 9, 470, 11, 469, 12, 468, 13, 467, 14, 7, 1, 458, 23, 457, 23, 457, 23, 458, 22, 459, 21, 461, 19, 463, 18, 462, 19, 461, 20, 1, 9, 450, 33, 447, 34, 446, 36, 444, 37, 443, 38, 443, 38, 443, 37, 445, 35, 450, 7, 2, 21, 459, 21, 460, 20, 461, 19, 463, 3, 3, 10, 471, 8, 474, 3, 18209, 1, 479, 2, 478, 3, 477, 4, 476, 5, 475, 6, 474, 7, 474, 10, 471, 8, 474, 4, 5302, 7, 447, 4, 26, 4, 445, 6, 1, 15, 11, 3, 443, 29, 6, 3, 442, 32, 4, 2, 442, 38, 442, 38, 442, 38, 442, 38, 442, 38, 442, 37, 444, 16, 1, 18, 446, 8, 1, 3, 6, 3, 4, 8, 449, 3, 22, 4, 46076, 6, 468, 13, 466, 15, 461, 20, 459, 21, 458, 22, 457, 23, 457, 23, 457, 23, 457, 23, 457, 22, 458, 21, 459, 20, 460, 20, 461, 19, 462, 18, 463, 17, 462, 18, 461, 19, 460, 19, 461, 19, 461, 19, 461, 19, 461, 19, 461, 19, 461, 19, 461, 18, 463, 16, 465, 8, 1, 3, 470, 4, 31194, 12, 9, 6, 452, 29, 445, 36, 443, 38, 441, 39, 435, 45, 434, 46, 427, 53, 426, 54, 425, 55, 424, 55, 425, 54, 426, 53, 427, 51, 429, 25, 1, 24, 430, 22, 5, 22, 210], 'size': [480, 640]}






References:




尚有其他訓練影像的標記格式, 如PASCAL VOC 以XML格式儲存, TensorFlow Object Detection 以.csv 儲存, 而Darknet (Yolo) 以.txt 儲存

1 則留言 :

  1. Call Girls contact number in Aerocity are honest as well as simple to get in touch with brand-new clients due to the fact that they take it in the form of job that must be full in any type of problem Elite Dating Call Girls in Ahmedabad never ever rejects site visitors and also makes bold positions that we have demand in front of her.Dating Call Girls in Ahmedabad Backside shots and six-nine position shots are well-using positions of such kind of activities Escorts whatsapp number in Haridwar are able to provide hand tasks, blowjob, master bating, Escorts whatsapp number in Ahmedabad non-stop seepage as well as many more companies like this.Escorts whatsapp number in Delhi Make a strategy separately as well as call with agencies.

    回覆刪除