2018年10月25日 星期四

安裝jupyter notebook 於Raspberry Pi







1.) 安裝 jupyter notebook 

sudo pip3 install jupyter   

(約等個15分鐘吧..耐心等候)

2.) 讓 jupyter-notebook Server 可從windows連入

==> jupyter notebook --generate-config

#修改 ~/.jupyter/jupyter_notebook_config.py 找到
#c.NotebookApp.ip = ‘localhost'

改成

c.NotebookApp.ip = '0.0.0.0’ 





# 設定瀏覽器登入 jupyter notebook server密碼

==> jupyter notebook password

3.)啓動jupyter-notebook 


sudo jupyter-notebook

如果是root ,則要多加 --allow-root 才能啓動    sudo jupyter-notebook --allow-root     





4.) 在windows上,打開瀏覽器連入

http://192.168.1.252:8888/


Note: 192.168.1.252 為 Pi的Ethernet IP, 也可以用Wi-Fi 的IP連入, 只要那個IP是Windows能連到的即可 (同一個router所配的IP都OK!)

如何查Pi的IP?  請執行ifconfig  ==> 查看Pi網路IP 

(更多Pi 的基礎操作, 請看課程學習 )




 成功登入 jupyter notebook畫面~



 看一下 jupyter notebook kernel 使用的python 版本






2018年10月24日 星期三

工程師不可不知的影像辨識 3 階段



AI 時代中,「#影像辨」是其中一項熱門的應用,在許多產業都可以見到「影像辨」的蹤跡。若你擁有「影像辨」的技術,意味著你所擁抱的機會更大。然而這項技術實際上有許多眉眉角角」影響著專案的成果,如何讓你的「影像辨識」專案的準確率更高呢?更符合你設定的目標呢?

首先在第1個階段,從低階的處理技術進行 #影像預處 (image preprocessing)。由於你所取得的影像資訊可能有尺寸大小不一、雜訊(noise)、對比度差異等問題,而為了增加後續作業的準確率,依據你所取得的影像狀況,你可以用 #OpenCV 這項工具進行 #影像預處理 的工作,像是 #對比度增 #去雜 #尺寸重 等。

接著在第2階段,運用 #OpenCV 進行像是 #影像閾值#形態學轉#Canny邊緣檢#Harris角點檢 等演算法來擷取 #影像特,方便後續的影像處理作業,像是 ##Segmentation) #(#Classifiacation)等。

然後在第3個階段,運用 #Tensorflow#Keras  #AI 工具建立 #深度學#DeepLearning)模型,讓演算法去 #擷取影像特 進行模型訓練,依據結果,在流程中的相應環節進行調整,讓機器實現「#」的目的。

如果你對影像辨識有濃厚的興趣,並且希望學習不是只有聽聽就忘了,而是能真正從影像處理、影像偵測,一直到影像辨識/感知 完整學會與產業接軌的技術,歡迎加入艾鍗的學習行列。

小班制教學 : 與老師一對一的互動,可以讓你的問題可以得到快速解答。
主題式實作演練 : 循序漸進的主題式引導搭配學員上機演練,讓你自然而然地學會關鍵技術,牢牢記住。
完整範例程式碼 : 程式碼均由老師debug(除錯)過,並附詳細解說加上秘技,讓你複習有依據,學習高成效,不會再因為卡關而放棄成就自己的機會。
產業工程師親授 : 學到書本上沒有的知識,賺到老師實務開發的經驗。而且有老師帶著學,學得更快。

別在把人生白白蹉跎掉,你值得更好的未來!
立即預約專業諮詢,請撥(02)2316-7736
=============================
<AI
影像系列課程>
💡AI深度學習與影像辨識 http://bit.ly/2NRDM5a
💡機器人AI視覺整合實務 http://bit.ly/2PMpYFU
💡影像辨識與邊緣運算實戰
 http://bit.ly/2PRvvuK



2018年9月27日 星期四

ROS Rviz




RVizThe ROS Visualization Tool: 機器人作業系統 3D 視覺化工具。 它的作用就是:一個虛擬世界,用來模擬機器運行效果。簡單的說它就是 ROS 的一個模擬器軟體。一個顯示機器人實體的工具。 





[在Ubuntu 下執行]
roscore

export TURTLEBOT3_MODEL=burger
roslaunch turtlebot3_bringup turtlebot3_model.launch



#須事先安裝 turtlebot3 package
cd ~/catkin_ws/src/
git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
git clone https://github.com/ROBOTIS-GIT/turtlebot3.git
cd ~/catkin_ws && catkin_make




2018年8月28日 星期二

影像型能學運算 (Morphological Operations)



影像型能學運算 (Morphological Operations):

形態學主要用於二值化後的影像,根據使用者的目的,用來凸顯影像的形狀特徵,像邊界和連通區域等,同時像細化、像素化、修剪毛刺等技術也常用於圖像的預處理和後處理,
In short: A set of operations that process images based on shapes. Morphological operations apply a structuring element to an input image and generate an output image.

The most basic morphological operations are two: Erosion and Dilation. They have a wide array of uses, i.e. :


  1. Removing noise
  2. Isolation of individual elements and joining disparate elements in an image.
  3. Finding of intensity bumps or holes in an image



膨脹(Dilation)==> 白色區域影像變胖

Left image: original image inverted, right image: resulting dilatation




侵蝕(Erosion)  ==>  白色區域影像變瘦

Left image: original image inverted, right image: resulting erosion




斷開(Opening):  Erosion再Dilation 可以將硬幣分離





References:

  1. https://slidesplayer.com/slide/11398438/
  2. http://monkeycoding.com/?p=577
  3. http://blog.christianperone.com/2014/06/simple-and-effective-coin-segmentation-using-python-and-opencv/

2018年8月26日 星期日

HAAR Face Detection


Face Detection using Haar Cascades

利用 HAAR 分類器(包含不同的偵測dataSet), 用一個windw size 下, 不同Feature都有得到不同的分數.  再用不同window size, 再去掃,


整個演算法跑完之後, 顯示的這些不同矩形框,就是那些"疑似有人臉"出現的地方..








上課範例:

Haar-cascade Detection in OpenCV




2018年8月18日 星期六

18650電池




單顆充電電池(鎳氫電池)充飽電大概是1.2V
單顆18650電池(鋰電池)充飽電大概是4.2V (電壓掉到3.4~3.6v以下就要充電了)



18650 battery Size: 18mm x 65mm
18650電池的單顆電壓為3.7V,容量約為1000mAH左右 (以1000mA電流輸出能力持續1小時)


※電池電力尚未用至最低之前就充電,電池壽命將更長。
※將電池使用至低電量或完全沒電才進行充電,會造成新式鋰電池無法充電。
※電池金屬面積較小的一端為正極(+),較大的一端為負極(-)。


C是指 C 倍的放電效率




1C指的是在1小時內,可以把電池內全部的容量充飽或放光,而0.2C則因電流比較小,所以充電/放電的時間就是1/0.2 = 5小時了,換句話說2C的充/放電時間就是1/2 = 0.5小時了模型店使用的電池,由於需要大電流放電才能驅動馬達,所以幾C就很重要了,一般標稱8C,10C等,就是說電池有大電流放電的能力,基本上數值越大越好


2200mah 7.4V 3C
1300mah 7.4V 10C
第一組電池代表他放電電流是 2.2ax3=6.6a 的電流
第二組是 1.3ax10= 13a 的電流
容量來說,第一組比較大。可以用比較久 但是第二組可以放第一組二倍的電流





2018年8月11日 星期六

VS2017 設定Tesseract-OCR的編譯環境





Tesseract是一個光學字元識別引擎,支援多種作業系統。

[Include 目錄] (增加一項)


[程式庫目錄] 


[其他相依性] 


[C/C++ 前置處理器] 前置處理器定義






設定完成後, 執行上課範例, 可以看見原始影像為TAW-8686.jpg 然後看看Tesseract識別引擎的效果. 理論上"乾淨"的圖識別的效果應該100%正確!




但實際上取得的車牌影像不會如此乾淨, 車牌會有污點、影像對比度可能也不足(光線影響)、拍攝角度不對以及有其他的文字、符號等等., 都得再經過影像處理的手法重新把影像"惡搞"後,才能丟入OCR去做後續的文字分析識別


台灣的車牌


影像經過二值化處理,將原始影影像轉換成"黑白"影像, 至於Threshold value 怎麼選, 這就是學問所在啦~


若想要用自己的識別引擎去分析文字或一些特定的符號,也可以自己去訓練。訓練的方法可以用現在很夯的AI方法如Deep Learning  CNN來訓練模型,像是 MINST 手寫數字辨識 這種資料集(Data Set) 模型可以讓你識別出0~9的手寫數字。

不過在做真正的影像識別的應用,通常得經過一些影像處理的技巧, 例如進行二值化 (Thresholding)、閾值分析、影像去雜訊、影像模糊、影像強化、影像縮放、色彩空間轉換及影像切割等,才餵進到識別引擎,以獲得較高的辡別率。因此,對影像進行預處理,總是避免不了~